- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Xuan, Yao (4)
-
Ceniceros, Hector D (2)
-
Balkin, Robert (1)
-
Ceniceros, Hector D. (1)
-
Delaney, Kris T (1)
-
Delaney, Kris T. (1)
-
Ermon, Stefano (1)
-
Fredrickson, Glenn H (1)
-
Fredrickson, Glenn H. (1)
-
Han, Jiequn (1)
-
He, Yutong (1)
-
Hu, Ruimeng (1)
-
Janowicz, Krzysztof (1)
-
Kai-Xuan Yao, Zhendong Zhang (1)
-
Lao, Ni (1)
-
Mai, Gengchen (1)
-
Song, Jiaming (1)
-
Zuo, Wenyun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xuan, Yao; Delaney, Kris T; Ceniceros, Hector D; Fredrickson, Glenn H (, The Journal of Chemical Physics)A computational framework that leverages data from self-consistent field theory simulations with deep learning to accelerate the exploration of parameter space for block copolymers is presented. This is a substantial two-dimensional extension of the framework introduced in the work of Xuan et al. [J. Comput. Phys. 443, 110519 (2021)]. Several innovations and improvements are proposed. (1) A Sobolev space-trained, convolutional neural network is employed to handle the exponential dimension increase of the discretized, local average monomer density fields and to strongly enforce both spatial translation and rotation invariance of the predicted, field-theoretic intensive Hamiltonian. (2) A generative adversarial network (GAN) is introduced to efficiently and accurately predict saddle point, local average monomer density fields without resorting to gradient descent methods that employ the training set. This GAN approach yields important savings of both memory and computational cost. (3) The proposed machine learning framework is successfully applied to 2D cell size optimization as a clear illustration of its broad potential to accelerate the exploration of parameter space for discovering polymer nanostructures. Extensions to three-dimensional phase discovery appear to be feasible.more » « less
-
Xuan, Yao; Balkin, Robert; Han, Jiequn; Hu, Ruimeng; Ceniceros, Hector D (, Notices of the American Mathematical Society)
-
Kai-Xuan Yao, Zhendong Zhang (, Nature)
-
Xuan, Yao; Delaney, Kris T.; Ceniceros, Hector D.; Fredrickson, Glenn H. (, Journal of Computational Physics)null (Ed.)
An official website of the United States government

Full Text Available